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Introduction
The increasing interest in the climate in general and, in particular, in the role
that Arctic processes play within it has led to an increasing demand for ac-
curate predictions for sea ice motion and deformation, i.e. its dynamics.
Finding suitable equations to describe the sea ice dynamics has been a long–
standing challenge for the sea ice community. The determination of an ap-
propriate constitutive relation, in particular, has been a demanding task. This
work reviews the developments in continuum-based sea ice modeling with
a particular focus on the formulation of internal stresses, i.e. the rheology,
going from early fluid-like models to the most recent neXtSIMDG model em-
ploying the solid–brittle rheology.

A model of sea ice dynamics
• Ice state variable J ∈ J = {A, ĥ . . . }, where J is model-dependent
• Sea ice mean thickness ĥ and concentration A being the most important
• Sea ice internal stress σ, strain ε, strain rate ε̇
• Equation of motion is depth-integrated
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• State variables may follow a conservation/transport law

Fluid-like models
• First efforts to model sea ice rheological behavior: viscous fluid model

(poor approximation);
• Compact ice deformates sporatically and irreversibly → critical stress states

specified by a yield curve
• Plastic rheologies were developed and coupled with different subcritical

behaviors:
– elastic (EP model, Coon et al. 1974) σ = EK : ε
– viscous (VP model, Hibler 1979) σ = 2ηε̇+ [ζ − η]tr ε̇I− P

2 I
• A flow rule specifies how deformation occurs once a critical stress is

reached

Multifractality of sea ice deformation
• Observed spatial/temporal scaling of sea ice deformation
• Intermittency and heterogeneity of deformation
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Solid-like models
• Sea ice cover modeled as a progressively damaging medium (with a Mohr-

Coulomb criterion). Damage level d ≤ 1; E = E(d), η = η(d), λ = η/E

• Elasto-brittle (EB) Dσ
Dt = E(K : ε̇)− ḋ
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• Maxwell-Elasto-brittle (MEB) Dσ
Dt = E(K : ε̇)− σ

λ
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• Brittle-Bingham-Maxwell (BBM) Dσ

Dt = E(K : ε̇)− σ
λ
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)
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Summary
• In viscous-fluid models the mechanical parameters (η,E, λ) are indepen-

dent of the internal stresses. This resulted in unphysical behaviour.
• In plastic models ice dynamic parameters adjust to keep stresses

(sub)critical. However, these models fail to reproduce the observed scal-
ing laws (multifractality).

• Brittle models, in which ice dynamic parameters do not instantaneously
relax back after stresses are released, perform better at this point.


